.comment-link {margin-left:.6em;}

2Physics Quote:
"Many of the molecules found by ROSINA DFMS in the coma of comet 67P are compatible with the idea that comets delivered key molecules for prebiotic chemistry throughout the solar system and in particular to the early Earth increasing drastically the concentration of life-related chemicals by impact on a closed water body. The fact that glycine was most probably formed on dust grains in the presolar stage also makes these molecules somehow universal, which means that what happened in the solar system could probably happen elsewhere in the Universe."
-- Kathrin Altwegg and the ROSINA Team

(Read Full Article: "Glycine, an Amino Acid and Other Prebiotic Molecules in Comet 67P/Churyumov-Gerasimenko"

Sunday, July 31, 2005

Quarks on a chip

Quarks are considered to be fundamental building blocks of matter and
are bound together inside subatomic particles by the 'strong nuclear
force' (see our past posting), which is weak when the quarks are close,
but increases steadily as they move apart, making it impossible to isolate
a single quark.

Quarks are the inner constituents of 99.9% of ordinary matter; yet it is
impossible to examine a single quark in the laboratory. Consequently,
some of their basic properties are not known, such as their precise masses
or why they exist in 6 different types.

In order to understand Quarks, the theory describing the strong nuclear
force, called Quantum Chromodynamics (QCD), has to be simulated on
huge computers. Particle physicists are embarking on a new attempt to
resolve the mysteries of quarks using 3 purpose-designed computers
that employ QCD-on-a-chip, or QCDOC, technology.

The first of the three computers is located at the University of Edinburgh
(UK), for use by the UK Quantum Chromodynamics (UKQCD)
collaboration of scientists from 7 British universities. The 2nd is at the
RIKEN Brookhaven Research Center in Brookhaven National Laboratory
in the USA. The 3rd, part of the US Department of Energy's programme
in high energy and nuclear physics, is also at Brookhaven.

A little slower than a PC's microprocessor, the QCDOC chip was designed
to consume a 10th of the electrical power, so that tens of thousands of
them could be put into a single machine. Each machine operates at a speed
of 10 Teraflops, or 10 trillion (i.e. million million) floating point operations
per second. By comparison, a regular desktop computer operates at a few
Gigaflops (a thousand million floating point operations per second), while
IBM's BlueGene, a close relative of QCDOC and the fastest computer in
the world, operates at more than 100 Teraflops.



Post a Comment

Links to this post:

Create a Link