.comment-link {margin-left:.6em;}

2Physics Quote:
"Many of the molecules found by ROSINA DFMS in the coma of comet 67P are compatible with the idea that comets delivered key molecules for prebiotic chemistry throughout the solar system and in particular to the early Earth increasing drastically the concentration of life-related chemicals by impact on a closed water body. The fact that glycine was most probably formed on dust grains in the presolar stage also makes these molecules somehow universal, which means that what happened in the solar system could probably happen elsewhere in the Universe."
-- Kathrin Altwegg and the ROSINA Team

(Read Full Article: "Glycine, an Amino Acid and Other Prebiotic Molecules in Comet 67P/Churyumov-Gerasimenko"
)

Tuesday, September 06, 2005

Bose-Einstein condensate













About 80 years ago, based on previous work by the Indian physicist
Satyendra Nath Bose, Einstein proposed that if a gas of neutral atoms is
cooled to a low enough temperature, all atoms of the gas would fall into the
same quantum state. In other words, all of the million or billion atoms in
the gas would end up in the same place at the same time, a weird quantum
state dubbed a Bose-Einstein condensate.

The supercold atoms are created from a hot gas of neutral atoms that is
laser cooled, collected in a magneto-optic trap, cooled further by evaporation,
and then spun off into a magnetic trap for a few seconds of study before it
warms up and dissipates.

A team of physicists at UC Berkeley has created a Bose-Einstein condensate
of rubidium atoms and nudged it into a circular racetrack 2 millimeters
across, creating a particle storage ring analogous to the accelerator storage
rings of high energy physics. This ring, the first to contain a Bose-Einstein gas,
is full of cold particles at a temperature of only one-millionth of a degree
above absolute zero (which is -273 degree centigrade), traveling with
energies a billion trillion times less than the particles in a high-energy storage
ring [The atoms circled the racetrack at a speed of about 50 to 150 millimeters
per second, which is equal to an energy of about one nano-electron volt (eV)
per atom, or one billionth of an electron volt. High-energy particle accelerators
routinely bump particles to energies of a few tera-electron volts, or a trillion
eV - a billion trillion times more energetic than the cold rubidium atoms].

Though such slow-moving rubidium atoms would be useless for producing
the exotic collision particles that are the bread and butter of high-energy
accelerators, cold collisions of such atoms might reveal new quantum physics,
said Dan Stamper-Kurn, assistant professor of physics at UC Berkeley and
leader of the study. Their paper was accepted for publication by Physical
Review Letters last week.

Useful Sites:
http://www.colorado.edu/physics/2000/bec/index.html
http://en.wikipedia.org/wiki/Bose-Einstein_condensate

Labels:


2 Comments:

At 10:14 PM, Anonymous Anonymous said...

Blog, Blog, Blog!...
A new idea is taking off on the Internet, women are creating their own blogs on almost any topic -- relationship advice, dealing with teen years, and having a baby.
Hey, you have a great blog here! I'm definitely going to bookmark you!

I have a ##Discount Airline tickets##website. It pretty much covers Discount Tickets, if you plan on travel soon you should check it out, you can save you 10%-50% off your next airfare!

Come and check it out if you get time :-)

 
At 11:21 PM, Blogger Vijay said...

Nice introduction to the topic.

I also see that you have posted links for further study. Thanks for that !

 

Post a Comment