.comment-link {margin-left:.6em;}

2Physics Quote:
"Can photons in vacuum interact? The answer is not, since the vacuum is a linear medium where electromagnetic excitations and waves simply sum up, crossing themselves with no interaction. There exist a plenty of nonlinear media where the propagation features depend on the concentration of the waves or particles themselves. For example travelling photons in a nonlinear optical medium modify their structures during the propagation, attracting or repelling each other depending on the focusing or defocusing properties of the medium, and giving rise to self-sustained preserving profiles such as space and time solitons or rapidly rising fronts such as shock waves." -- Lorenzo Dominici, Mikhail Petrov, Michal Matuszewski, Dario Ballarini, Milena De Giorgi, David Colas, Emiliano Cancellieri, Blanca Silva Fernández, Alberto Bramati, Giuseppe Gigli, Alexei Kavokin, Fabrice Laussy, Daniele Sanvitto. (Read Full Article: "The Real-Space Collapse of a Two Dimensional Polariton Gas" )

Sunday, January 08, 2006

Einstein Is Precisely Right

Precise tests of the predictions of Einstein's Theory of Relativity are important because special relativity is a central principle of modern physics and the basis for many scientific experiments as well as useful instruments like the global positioning system (GPS).

The December 21st issue of Nature carries an article describing an experiment that performed the most precise direct test ever of what is perhaps the most famous formula in science: E=mc^2, or that the energy (E) equals mass (m) times the square of the speed of light (c^2), a direct outcome of Einstein’s theory of special relativity.

The experiment was performed by scientists at the Massachusetts Institute of Technology (MIT), the Commerce Department’s National Institute of Standards and Technology (NIST), and the Institute Laue Langevin, Genoble, France (ILL) .

According to the basic laws of physics, every wavelength of electromagnetic radiation corresponds to a specific amount of energy. The NIST/ILL team of scientists determined the value for energy in the Einstein equation by carefully measuring the wavelength of gamma rays emitted by silicon and sulfur atoms. Then comparing these numbers and MIT measurements of the mass of the same atoms, the scientists found that E differs from mc^2 by at most 0.0000004, or four-tenths of 1 part in 1 million. This result is “consistent with equality” and is 55 times more accurate than the previous best direct test of Einstein’s formula.

Congratulations, Mr. Einstein! It was a good way to end the Year of Physics.

Labels:


0 Comments:

Post a Comment

Links to this post:

Create a Link