.comment-link {margin-left:.6em;}

2Physics Quote:
"Today’s most precise time measurements are performed with optical atomic clocks, which achieve a precision of about 10-18, corresponding to 1 second uncertainty in more than 15 billion years, a time span which is longer than the age of the universe... Despite such stunning precision, these clocks could be outperformed by a different type of clock, the so called “nuclear clock”... The expected factor of improvement in precision of such a new type of clock has been estimated to be up to 100, in this way pushing the ability of time measurement to the next level."
-- Lars von der Wense, Benedict Seiferle, Mustapha Laatiaoui, Jürgen B. Neumayr, Hans-Jörg Maier, Hans-Friedrich Wirth, Christoph Mokry, Jörg Runke, Klaus Eberhardt, Christoph E. Düllmann, Norbert G. Trautmann, Peter G. Thirolf
(Read Full Article: "Direct Detection of the 229Th Nuclear Clock Transition"

Sunday, March 12, 2006

Photon-Photon Scattering

Vacuum is 'a space absolutely devoid of matter'. But according to Quantum ElectroDynamics (QED), particles can still be created in this emptiness of vacuum through light-light interactions. This property follows directly from the quantum nature of the sub-atomic world, to be specific, from the Heisenberg Uncertainty Principle which states that the uncertainty in the position of a particle and the uncertainty of the momentum of a particle are related. A consequence of this principle is that even though there is nothing in the vacuum (no matter or radiation at all), there is still an uncertainty in the amount of energy which can be contained in the vacuum. On average, the energy is constant, however, there is always a slight uncertainty in the energy, which may allow a nonzero energy to exist for short intervals of time. Because of the equivalence between matter and energy, these small energy fluctuations can produce matter (particles) which exists for a short time and then disappears.

In a paper entitled "Using High-Power Lasers for Detection of Elastic Photon-Photon Scattering" published in March 3 issue of Physical Review Letters (Vol.96), Physicists from Umeå University, in Umeå, Sweden, and the Rutherford Appleton Lab, England, propose an experiment to explore the vacuum by aiming three powerful laser streams at each other in 3-dimensional space of the Laboratory (This is important because such proposals mooted earlier had the beams all in a single plane). These three beams will merge to produce a fourth stream with a wavelength shorter than any of the input beams.

The actual experiment is planned to be carried out over the next year at the Rutherford Appleton Lab near Didcot, England. By carefully polarizing the incoming light beams, the number of photons in the output beam can be controlled. This would be an important tool for investigating the parameter space of such a complex experiment, thus providing valuable information about the interactions that took place in the vacuum.

Besides providing good insight into QED itself, this experiment would also be used for testing theories that propose the existence of minor departures from Lorentz invariance which is an important proposition in special relativity that there is no preferred frame of reference. Light-light interactions may also be used to explore various hypotheses related to dark energy that is a hot topic of cosmology nowadays and may provide some clue about the rate and nature of the expansion of the universe.

Labels: , ,


At 8:08 AM, Anonymous Anonymous said...

Wow this is amazing. They are finally investiagting the vacuum with photon - photon scattering experiments. Would be interesting to see what happens when these scattering excerises are accomplished under extremely high magnetic fields or high current electron arcs in vacuum.


Post a Comment

Links to this post:

Create a Link