.comment-link {margin-left:.6em;}

2Physics Quote:
"Many of the molecules found by ROSINA DFMS in the coma of comet 67P are compatible with the idea that comets delivered key molecules for prebiotic chemistry throughout the solar system and in particular to the early Earth increasing drastically the concentration of life-related chemicals by impact on a closed water body. The fact that glycine was most probably formed on dust grains in the presolar stage also makes these molecules somehow universal, which means that what happened in the solar system could probably happen elsewhere in the Universe."
-- Kathrin Altwegg and the ROSINA Team

(Read Full Article: "Glycine, an Amino Acid and Other Prebiotic Molecules in Comet 67P/Churyumov-Gerasimenko"

Monday, November 20, 2006

Breakthrough in Quantum Computing

Christoph Boehme of University of Utah works with equipment used to detect magnetic "spins" of phosphorus atoms (photo courtsey: John Lupton/University of Utah)

A US-German team of scientists could advance a step closer to designing super fast quantum computers with their recent experiment showing how a phosphorus-and-silicon quantum computer might work. Their study to be published in the December issue of Nature Physics shows it's possible to read data stored in the form of the magnetic "spins" of phosphorus atoms. They have demonstrated experimentally that the nuclear spin orientation of phosphorus atoms embedded in silicon can be measured by very subtle electric currents passing through the phosphorus atoms.

Digital computers of the current world rely on information transmitted by flowing electricity in the form of electrons, which are negatively charged subatomic particles. Transistors in these computers are electrical switches that store data as "bits" in which "off" (no electrical charge) and "on" (charge is present) represent one bit of information: either 0 or 1. On the other hand, in a quantum computer, one quantum bit or 'qubit' could be both 0 and 1 at the same time. Quantum computers rely on the fact that the smallest particles can be in different places at the same time abiding by some seemingly strange laws of quantum mechanics.

The scientists harnessed the unique properties of quantum physics by "doping" silicon — the semiconductor used in digital computer chips — with atoms of phosphorus. Next they applied electric current to read and process the data stored in the "spins" of those phosphorous atoms' nuclei. which may register a value of 0 and 1 simultaneously. In essence, the team's study was about a successful "reading" of the net spin of 10,000 of the electrons and nuclei of phosphorus atoms near the surface of the silicon.

This is a major step in right direction but, like any other revolution in science and technology, it needs to go through lot of developments and wait for progress in other related aspects before a quantum computer becomes a reality.

Team of scientists: Christoph Boehme, University of Utah, USA; Klaus Lips at the Hahn-Meitner Institute, Berlin with graduate students Andre Stegner and Hans Huebl; Martin Stutzmann and Martin Brandt, Technical University of Munich.

Background Reading:
The Quantum Computer: An Introduction" by Jacob West, Caltech, USA
"Quantum computation: a tutorial" by Samuel L. Braunstein, University of York, York, UK.
Wikipedia page on quantum computer

Labels: ,


Post a Comment

Links to this post:

Create a Link