.comment-link {margin-left:.6em;}

2Physics Quote:
"Many of the molecules found by ROSINA DFMS in the coma of comet 67P are compatible with the idea that comets delivered key molecules for prebiotic chemistry throughout the solar system and in particular to the early Earth increasing drastically the concentration of life-related chemicals by impact on a closed water body. The fact that glycine was most probably formed on dust grains in the presolar stage also makes these molecules somehow universal, which means that what happened in the solar system could probably happen elsewhere in the Universe."
-- Kathrin Altwegg and the ROSINA Team

(Read Full Article: "Glycine, an Amino Acid and Other Prebiotic Molecules in Comet 67P/Churyumov-Gerasimenko"
)

Wednesday, February 07, 2007

Store Light Here and Retrieve It at a Distance

Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics [Photo courtsey: Jay Penni Photography, Harvard Univ]

In Bose-Einstein condensates (BECs), atoms are cooled to such low temperatures that they all occupy the same quantum state, even though they may be physically apart from each other. Making use of such quantum mechanically indistinguishable microscopic particles, Lene Hau and colleagues from Harvard University have been able to imprint a coherent pulse of light on a collection of ultracold atoms -- and then retrieve the same light pulse from a second set of atoms that is some distance away.

"We demonstrate that we can stop a light pulse in a supercooled sodium cloud, store the data contained within it, and totally extinguish it, only to reincarnate the pulse in another cloud two-tenths of a millimeter away," announced Lene Hau. In a paper published in Feb 8 issue of 'Nature', Lene Hau and her co-authors, Naomi S. Ginsberg and Sean R. Garner, reported their spectacular finding that the light pulse can be revived, and its information transferred between the two clouds of sodium atoms (or, the Bose-Einstein condensates -- illuminated with a control laser and cooled to just billionths of a degree above absolute zero), by converting the original optical pulse into a traveling matter wave. The matter wave is a matter-copy of the original pulse, traveling at a leisurely 200 meters per hour. When the matter pulse enters the second of the supercooled clouds which is illuminated with a control laser, it is readily converted back into light.

The results of this experiment provide a powerful means of controlling optical information and certainly will lead a way to future directions of optical communication. It could also have applications in the developing fields of quantum information processing and quantum cryptography.

Reference:
"Coherent control of optical information with matter wave dynamics"
Naomi S. Ginsberg, Sean R. Garner and Lene Vestergaard Hau

Nature 445, 623-626 (8 February 2007) Link to Abstract

Background Reading
Wikipedia page on Bose-Einstein Condensate
BEC homepage, JILA, Colorado
2Physics past posting on BEC

Labels: , ,


0 Comments:

Post a Comment