.comment-link {margin-left:.6em;}

2Physics Quote:
"The quantum-mechanical behavior of light atoms plays an important role in shaping the physical and chemical properties of hydrogen-bonded liquids, such as water. Tunneling is a classic quantum effect in which a particle moves through a potential barrier despite classically lacking sufficient energy to transverse it. The tunneling of hydrogen atoms in condensed matter systems has been observed for translational motions through metals, anomalous proton diffusion in water phases, and in the rotation of methyl and ammonia groups ..."
Alexander I. Kolesnikov, George F. Reiter, Narayani Choudhury, Timothy R. Prisk, Eugene Mamontov, Andrey Podlesnyak, George Ehlers, Andrew G. Seel, David J. Wesolowski, Lawrence M. Anovitz
(Read Full Article: "Quantum Tunneling of Water in Ultra-Confinement"
)

Friday, April 13, 2007

High Energy Physics : 5 Needed Breakthroughs
-- Guenakh Mitselmakher

[ Our guest today in the ongoing feature,
'5-Breakthroughs' is Guenakh Mitselmakher, Distinguished Professor of Physics and Director of the Institute for High Energy Physics and Astrophysics at University of Florida, Gainesville.

Currently, he is also the leader of the Muon system development for the
CMS detector. CMS is one of two major universal detectors at the Large Hadron Collider at CERN, Geneva, Switzerland, which will begin operations in 2007-2008. He is also a member of the LIGO Science Collaboration, looking for the so called "burst" signals of Gravitational Wave (signals of limited duration), which may originate at a variety of astrophysical sources like supernova explosion.

In the long career starting from his PhD work in 1974 at the Joint Institute for Nuclear Research, Dubna, Russia, Prof. Mitselmakher made numerous important contributions in the field of Experimental high energy physics. Notable among those are studies of the lepton number conservation in rare decays of muons, investigations of the electromagnetic structure of pions, including the first measurements of the pion charge radius and polarizability, studies of the Standard Model and Beyond with the
DELPHI detector at CERN and with the CDF detector at Fermilab. He also proposed a new type of Particle detectors (what is now called Quantum Calorimetry or bolometry), now broadly used in Paricle Physics and Astrophysics.

Here are 5 important breakthroughs that Prof. Mitselmakher would like to see in High Energy Physics.
-- 2Physics.com Team]

1. To understand the origin of "Dark Energy".

2. To understand the origin of "Dark Matter".

3. To find the Higgs or an alternative explanation for the spontaneous symmetry breaking in the Standard Model.

4. To explain (and calculate) the parameters of the Standard Model, such as masses and mixing angles of quarks and leptons.

5. To test if quarks (and other particles considered to be point-like) have a substructure.

Labels: ,


0 Comments:

Post a Comment

Links to this post:

Create a Link