.comment-link {margin-left:.6em;}

2Physics Quote:
"Can photons in vacuum interact? The answer is not, since the vacuum is a linear medium where electromagnetic excitations and waves simply sum up, crossing themselves with no interaction. There exist a plenty of nonlinear media where the propagation features depend on the concentration of the waves or particles themselves. For example travelling photons in a nonlinear optical medium modify their structures during the propagation, attracting or repelling each other depending on the focusing or defocusing properties of the medium, and giving rise to self-sustained preserving profiles such as space and time solitons or rapidly rising fronts such as shock waves." -- Lorenzo Dominici, Mikhail Petrov, Michal Matuszewski, Dario Ballarini, Milena De Giorgi, David Colas, Emiliano Cancellieri, Blanca Silva Fernández, Alberto Bramati, Giuseppe Gigli, Alexei Kavokin, Fabrice Laussy, Daniele Sanvitto. (Read Full Article: "The Real-Space Collapse of a Two Dimensional Polariton Gas" )

Friday, April 13, 2007

High Energy Physics : 5 Needed Breakthroughs
-- Guenakh Mitselmakher

[ Our guest today in the ongoing feature,
'5-Breakthroughs' is Guenakh Mitselmakher, Distinguished Professor of Physics and Director of the Institute for High Energy Physics and Astrophysics at University of Florida, Gainesville.

Currently, he is also the leader of the Muon system development for the
CMS detector. CMS is one of two major universal detectors at the Large Hadron Collider at CERN, Geneva, Switzerland, which will begin operations in 2007-2008. He is also a member of the LIGO Science Collaboration, looking for the so called "burst" signals of Gravitational Wave (signals of limited duration), which may originate at a variety of astrophysical sources like supernova explosion.

In the long career starting from his PhD work in 1974 at the Joint Institute for Nuclear Research, Dubna, Russia, Prof. Mitselmakher made numerous important contributions in the field of Experimental high energy physics. Notable among those are studies of the lepton number conservation in rare decays of muons, investigations of the electromagnetic structure of pions, including the first measurements of the pion charge radius and polarizability, studies of the Standard Model and Beyond with the
DELPHI detector at CERN and with the CDF detector at Fermilab. He also proposed a new type of Particle detectors (what is now called Quantum Calorimetry or bolometry), now broadly used in Paricle Physics and Astrophysics.

Here are 5 important breakthroughs that Prof. Mitselmakher would like to see in High Energy Physics.
-- 2Physics.com Team]

1. To understand the origin of "Dark Energy".

2. To understand the origin of "Dark Matter".

3. To find the Higgs or an alternative explanation for the spontaneous symmetry breaking in the Standard Model.

4. To explain (and calculate) the parameters of the Standard Model, such as masses and mixing angles of quarks and leptons.

5. To test if quarks (and other particles considered to be point-like) have a substructure.

Labels: ,


0 Comments:

Post a Comment

Links to this post:

Create a Link