.comment-link {margin-left:.6em;}

2Physics Quote:
"Today’s most precise time measurements are performed with optical atomic clocks, which achieve a precision of about 10-18, corresponding to 1 second uncertainty in more than 15 billion years, a time span which is longer than the age of the universe... Despite such stunning precision, these clocks could be outperformed by a different type of clock, the so called “nuclear clock”... The expected factor of improvement in precision of such a new type of clock has been estimated to be up to 100, in this way pushing the ability of time measurement to the next level."
-- Lars von der Wense, Benedict Seiferle, Mustapha Laatiaoui, Jürgen B. Neumayr, Hans-Jörg Maier, Hans-Friedrich Wirth, Christoph Mokry, Jörg Runke, Klaus Eberhardt, Christoph E. Düllmann, Norbert G. Trautmann, Peter G. Thirolf
(Read Full Article: "Direct Detection of the 229Th Nuclear Clock Transition"

Monday, December 10, 2007

First Observation of ‘Persistent Flow’ in a Gas

In a paper to be published in a forthcoming issue of Physical Review Letters, a team of scientists from the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (NIST/University of Maryland) have reported the first observation of “persistent” current in an ultracold atomic gas —a frictionless flow of particles.

The researchers first created a Bose-Einstein condensate (BEC), a gas of atoms cooled to such low temperatures that it transforms into matter with unusual properties. One of these properties is superfluidity, the fluid version of superconductivity (whereby electrical currents can flow essentially forever in a loop of wire). Although BECs in principle could support everlasting flows of gas, traditional setups for creating and observing BECs have not provided the most stable environments for the generally unstable superfluid flows, which have tended to break up after short periods of time.

To address this issue, the team used laser light and magnetic fields on a gas of sodium atoms to create a donut-shaped BEC—one with a hole in the center—as opposed to the usual ball- or cigar-shaped BEC. This configuration ends up stabilizing circular superfluid flows because it would take too much energy for the hole—containing no atoms—to disturb matters by moving into the donut—which contains lots of atoms.

(a) In a donut-shaped, or “toroidal” trap, atoms mostly exist in a red ring and do not reside in the center (blue region), which represents an energy hill they cannot climb. (b) Image of a Bose-Einstein condensate (BEC) in the donut trap. (c) When there is no fluid flow around the donut and the trap is turned off, atoms (red) rush to the center. (d) When fluid flows around the donut and the trap is turned off, the current around the donut persists and does not rush to fill the hole [Image courtesy: National Institute of Standard and Technology]

To stir the superfluid, the researchers zap the gas with laser light that has a property known as orbital angular momentum. Acting like a boat paddle sweeping water in a circle, the orbital angular momentum creates a fluid flow around the donut. After the stirring, the researchers have observed the gas flowing around the donut for up to 10 seconds. Even more striking, this persistent flow exists even when only 20% of the gas atoms were in the special BEC state.

This relatively long-lived flow, a hallmark of a special property known as “superfluidity,” might help bring to the surface some deep physics insights by providing ways to study the fundamental connection between BECs and superfluids.

This may also enable super-sensitive rotation sensors that could someday make navigation more precise. A BEC superfluid is very sensitive to rotation; its flow would change in fixed steps in response to small changes in rotation [Note that some research groups around the world already have taken the first step in this direction by demonstrating BECs on a chip].

"Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap"
C. Ryu, M. F. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson, and W. D. Phillips,
Physical Review Letters, 99, 260401 (2007)

Abstract (link updated on Dec 29, 2007 after the paper is published)

[We thank Media Relations, NIST for materials used in this posting]

Labels: , ,


Post a Comment

Links to this post:

Create a Link