.comment-link {margin-left:.6em;}

2Physics Quote:
"Can photons in vacuum interact? The answer is not, since the vacuum is a linear medium where electromagnetic excitations and waves simply sum up, crossing themselves with no interaction. There exist a plenty of nonlinear media where the propagation features depend on the concentration of the waves or particles themselves. For example travelling photons in a nonlinear optical medium modify their structures during the propagation, attracting or repelling each other depending on the focusing or defocusing properties of the medium, and giving rise to self-sustained preserving profiles such as space and time solitons or rapidly rising fronts such as shock waves." -- Lorenzo Dominici, Mikhail Petrov, Michal Matuszewski, Dario Ballarini, Milena De Giorgi, David Colas, Emiliano Cancellieri, Blanca Silva Fernández, Alberto Bramati, Giuseppe Gigli, Alexei Kavokin, Fabrice Laussy, Daniele Sanvitto. (Read Full Article: "The Real-Space Collapse of a Two Dimensional Polariton Gas" )

Saturday, May 02, 2009

Measurement and Control of ‘Forbidden’ Collisions between Fermions could improve Atomic Clock Accuracy

Jun Ye adjusts the laser setup for a strontium atomic clock in his laboratory at Joint Institute for Laboratory Astrophysics (JILA).
[Image credit: J. Burrus/NIST]

In a paper published in the journal Science, a team of researchers led by Jun Ye of JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado (CU) at Boulder, reported measurement and control of seemingly 'forbidden' collisions between neutral strontium atoms — a class of fermions, which are not supposed to collide when in identical energy states. This breakthrough has made possible a significant boost in the accuracy of atomic clocks based on hundreds or thousands of neutral atoms.

Link to Jun Ye Group "AMO Physics & Precision Measurement" >>

JILA's strontium clock is one of several next-generation atomic clocks under development around the world. These experimental clocks are based on a variety of different atoms and designs, from single ions (electrically charged atoms) to thousands of neutral atoms; it is not yet clear which design will emerge as the best and be chosen as the future international time standard. The latest JILA work helps eliminate a significant drawback to clock designs based on ensembles of neutral atoms. The presence of many atoms increases both the precision and signal of a clock based on the oscillations between energy levels, or "ticks," in those atoms. However, uncontrolled interactions between atoms can perturb their internal energy states and shift the number of clock ticks per second, reducing overall accuracy.

For the past two years, the Jun Ye group has been developing an optical lattice atomic clock based on fermions such as a collection of identical strontium atoms (87Sr). The overall systematic uncertainty has reached below NIST-F1 -- the Cesium (Cs)-fountain clock operated by NIST,Boulder as the U.S. civilian time and frequency standard.

Fermions, according to the rules of quantum physics, cannot occupy the same energy state and location in space at the same time. Therefore, these identical strontium atoms are not supposed to collide. However, as the group improved the performance of their strontium clock over the past two years, they began to observe small shifts in the frequencies of the clock ticks due to atomic collisions. The extreme precision of their clock unveiled in 2008 (read past 2Physics report, April 17, 2008) enabled the group to measure these minute interactions systematically, including the dynamic effect of the measurement process itself, and to significantly reduce the resulting uncertainties in clock operation.

The JILA clock used in the latest experiments contains about 2,000 strontium atoms cooled to temperatures of a few microKelvin and trapped in multiple levels of a crisscrossed pattern of light, known as an optical lattice. The lattice is shaped like a tall stack of pancakes, or wells. About 30 atoms are grouped together in each well, and these neighboring atoms sometimes collide.

Ye's group discovered that two atoms located some distance apart in the same well are subjected to slight variations in the direction of the laser pulses used to boost the atoms from one energy level to another. The non-uniform interaction with light excites the atoms unevenly. Strontium atoms in different internal states are no longer completely identical, and become distinguishable enough to collide, if given a sufficient amount of time. This differential effect can be suppressed by making the atoms even colder or increasing the trap depth.

The probability of atomic collisions depends on the extent of the variation in the excitation of the ensemble of atoms. Significantly for clock operations, the JILA scientists determined that when the atoms are excited to about halfway between the ground state and the more energetic excited state, the collision-related shifts in the clock frequencies goes to zero. This knowledge enables scientists to reduce or even eliminate the need for a significant correction in the clock output, thereby increasing accuracy.

The discoveries described in Science also would apply to clocks using atoms known as bosons, which, unlike fermions, can exist in the same place and energy state at the same time. This category of clocks includes NIST-F1, the U.S. civilian time and frequency standard. In the case of bosons, variations in light-matter interactions would reduce (rather than increase) the probability of collisions.

Beyond atomic clocks, the high precision of JILA's strontium lattice experimental setup is expected to be useful in other applications requiring exquisite control of atoms, such as quantum computing—potentially ultra-powerful computers based on quantum physics—and simulations to improve understanding of other quantum phenomena such as superconductivity.

"There's a fundamental question here: Why do fermions actually collide?" Ye asks. "Now we understand why there is a frequency shift, and we can zero the shift ... [This result] does not change theory. The value is from the practical possibilities: We can control multi-particle interactions."

"Probing Interactions between Ultracold Fermions"
G.K. Campbell, M.M. Boyd, J.W. Thomsen, M.J. Martin, S. Blatt, M.D. Swallows, T.L. Nicholson, T. Fortier, C.W. Oates, S.A. Diddams, N.D. Lemke, P. Naidon, P. Julienne, J. Ye, and A. D. Ludlow
Science, Vol. 324, pp. 360-363 (2009)

[We thank Media Relations, NIST, Boulder for materials used in this posting]

Labels: , ,


Post a Comment

Links to this post:

Create a Link