.comment-link {margin-left:.6em;}

2Physics Quote:
"Eckhard D. Falkenberg, who found evidence of an annual oscillation in the beta-decay rate of tritium, was either the first or one of the first to propose that some beta-decay rates may be variable. He suggested that the beta-decay process may be influenced by neutrinos, and attributed the annual variation to the varying Earth-Sun distance that leads to a corresponding variation in the flux of solar neutrinos as detected on Earth. Supporting evidence for the variability of beta-decay rates could be found in the results of an experiment carried out at the Brookhaven National Laboratory."
-- Peter A. Sturrock, Ephraim Fischbach, Jeffrey D. Scargle

(Read Full Article: "Indications of an Influence of Solar Neutrinos on Beta Decays"
)

Sunday, February 07, 2010

Single Photons Observed at Seemingly Faster-than-Light Speeds

Paul Lett [Photo courtesy: Joint Quantum Institute, U. Maryland]

Researchers at the Joint Quantum Institute (JQI), a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland at College Park, can speed up photons (particles of light) to seemingly faster-than-light speeds through a stack of materials by adding a single, strategically placed layer. This experimental demonstration confirms intriguing quantum-physics predictions that light’s transit time through complex multilayered materials need not depend on thickness, as it does for simple materials such as glass, but rather on the order in which the layers are stacked. This is the first published study [1] of this dependence with single photons.

Strictly speaking, light always achieves its maximum speed in a vacuum, or empty space, and slows down appreciably when it travels through a material substance, such as glass or water. The same is true for light traveling through a stack of dielectric materials, which are electrically insulating and can be used to create highly reflective structures that are often used as optical coatings on mirrors or fiber optics.

In a follow up to earlier experimental measurements [2], the JQI researchers created stacks of approximately 30 dielectric layers, each about 80 nanometers thick, equivalent to about a quarter of a wavelength of the light traveling through it. The layers alternated between high (H) and low (L) refractive index material, which cause light waves to bend or reflect by varying amounts. After a single photon hits the boundary between the H and L layers, it has a chance of being reflected or passing through.

When encountering a stack of 30 layers alternating between L and H, the rare photons that completely penetrate the stack pass through in about 12.84 femtoseconds (fs, quadrillionths of a second). Adding a single low-index layer to the end of this stack disproportionately increased the photon transit time by 3.52 fs to about 16.36 fs. (The transit time through this added layer would be only about 0.58 fs, if it depended only upon the layer’s thickness and refractive index.) On the contrary, adding an extra H layer to a stack of 30 layers alternating between H and L would reduce the transit time to about 5.34 fs, so that individual photons seem to emerge through the 2.6-micron-thick stack at superluminal (faster-than-light) speeds.

What the JQI researchers are seeing can be explained by the wave properties of light. In this experiment, the light begins and ends its existence acting as a particle—a photon. But when one of these photons hits a boundary between the layers of material, it creates waves at each surface, and the traveling light waves interfere with each other just as opposing ocean waves cause a riptide at the beach. With the H and L layers arranged just right, the interfering light waves combine to give rise to transmitted photons that emerge early. No faster than light speed information transfer occurs because, in actuality, it is something of an illusion: only a small proportion of photons make it through the stack, and if all the initial photons were detected, the detectors would record photons over a normal distribution of times.

References
[1] N. Borjemscaia, S.V. Polyakov, P.D. Lett and A. Migdall, "Single-photon propagation through dielectric bandgaps", Optics Express, v 18, p 2279 (2010).
Abstract.
[2] N. Rutter, S.V. Polyakov, P. Lett amd A. Migdall, "Photon tunneling through dielectric bandgaps and evanescent gaps", Presented at the American Physical Society March Meeting, New Orleans, La. Session: W14.00010.
Abstract. News.

[We thank Joint Quantum Institute at University of Maryland and National Institute of Standards and Technology for materials used in this report]

Labels: ,


0 Comments:

Post a Comment

Links to this post:

Create a Link