.comment-link {margin-left:.6em;}

2Physics Quote:
"Perfect transparency has never been realized in natural transparent solid materials such as glass because of the impedance mismatch with free space or air. As a consequence, there generally exist unwanted reflected waves at the surface of a glass slab. It is well known that non-reflection only occurs at a particular incident angle for a specific polarization, which is known as the Brewster angle effect. Our question is: is it possible to extend the Brewster angle from a particular angle to a wide range of or all angles, so that there is no reflection for any incident angle."
-- Jie Luo, Yuting Yang, Zhongqi Yao, Weixin Lu, Bo Hou, Zhi Hong Hang, Che Ting Chan, Yun Lai

(Read Full Article: "Ultratransparent Media: Towards the Ultimate Transparency"

Sunday, September 28, 2014

When Magnetism Meets Optics

S. Mangin (Left) and E. E. Fullerton


C.H. Lambert, M. Salah, N. Bergeard, G. Malinowski, M. Hehn, S. Mangin,
Equipe Nanomagnetisme et Electronique de Spin de l’Institut Jean Lamour UMR CNRS 7198, Université de Lorraine, France

Y. Fainman, E. E. Fullerton,
Center For Magnetic Recording Research, University of California San Diego (UCSD), USA 

M. Cinchetti, M. Aeschlimann, 
Department of Physics and Research Center OPTIMAS, University of Kaiserlautern- Allemagne, Germany 

B. Varaprasad, Y. Takahashi, K. Hono, 
National Institute for Materials Science, Japan

With the fast development of mass storage units all around the world (clouds, data centers…) the pressure to increase the density, speed and energy efficiency of conventional hard disk drives is becoming stronger and stronger. The discovery of “All-optical control of ferromagnetic thin films and nanostructures” might open up new technological horizons in magnetic recording. This work is the results of a collaboration between scientists and engineers from University of California San Diego, Universite de Lorraine, Kaiserlauter Universitat and National Institute for Materials Science in Tsukuba, Japan published in Science on September 14th 2014 [1].

 The authors found that they could control the final state of the magnetization of a broad range of magnetic materials using laser pulses of circularly polarized light instead of an applied magnetic fields. In particular these researchers find out that the magnetization of some magnetic material similar to those used in the recording industry can be manipulated directly with a laser beam. The ability to optically control magnetic materials the density and access time of data on hard drives could be increased dramatically.

Image: Writing with a laser on a magnetic thin film.

The first observation of “all optical switching” of magnetic materials was performed in 2007 by the group from T. Rasing in Nijmegen on a very particular ferrimagnetic alloy GdFeCo [2]. Since this discovery there has been extensive studies of optical switching of this material class including detailed studies of the magnetic response to optical excitations of both the rare-earth (Gd) and transition metal (Fe and Co) elements. Based on these studies a detailed understanding has emerged of the ultra-fast physics of rare-earth-transition-metal alloys [3,4]. However, the extent of the practical impact of this research is limited by the materials that are not compatible with many modern technologies. By extending these exciting studies to new classes of materials such as ferromagnets, the “all-optical” magnetization switching has made a significant step to demonstrate its potential for technological impact.

These results further show that theoretical understanding of all-optical switching needs to be re-examined. Most recent theories predicted that the all-optical reversal should only occur in ferrimagnetic materials, where the overall magnetization is the result of the competition between two magnetic sub-lattices that are antiferromagnetically coupled. Our results show that all-optical switching is not exclusive to ferrimagnetic materials and therefore antiferromagnetic exchange coupling between two magnetic sublattices is not required. The results do suggest that heating near the Curie point is important for the all-optical switching in ferromagnetic materials. Near the Curie point then a small symmetry-breaking from circularly polarized light (e.g. the inverse Faraday effect or transfer of angular momentum from the light to the magnetic system) can deterministically determine the magnetization direction. However details of this process still need to be determined.

Video: Writing with a laser on a magnetic thin film : Micrometer size "Etch A Sketch".

[1] C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, E. E. Fullerton, "All-optical control of ferromagnetic thin films and nanostructures".  Science, 345, 1337-1340 (2014). Abstract.
[2] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, Th. Rasing, "All-optical magnetic recording with circularly polarized light". Physical Review Letters, 99, 047601 (2007). Abstract.
[3] Andrei Kirilyuk, Alexey V Kimel, Theo Rasing, "Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys". Reports on Progress in Physics, 76, 026501 
(2013). Abstract.
[4] S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, E.E. Fullerton, "Engineered materials for all-optical helicity-dependent magnetic switching".  Nature Materials, 13, 286–292 (2014). Abstract.



Post a Comment

Links to this post:

Create a Link